The Jaccard index, also known as the Jaccard similarity coefficient , is a statistic used for comparing the similarity and diversity of sample sets.
The Jaccard coefficient measures similarity between sample sets, and is defined as the size of the intersection divided by the size of the union of the sample sets:
- Here is the simple implementation of jaccard coeffecient using java.
- --------------------------------------------------------------------
- import java.awt.List;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Scanner;
class jaccard {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
System.out.println("Enter 1st word ");
String s1=scan.next();
System.out.println("Enter 2nd word ");
String s2=scan.next();
jaccard_coeffecient(s1,s2);
}
private static void jaccard_coeffecient(String s1, String s2) {
double j_coeffecient;
ArrayList<String> j1 = new ArrayList<String>();
ArrayList<String> j2 = new ArrayList<String>();
HashSet<String> set1 = new HashSet<String>();
HashSet<String> set2 = new HashSet<String>();
s1="$"+s1+"$";
s2="$"+s2+"$";
int j=0;
int i=3;
while(i<=s1.length())
{
j1.add(s1.substring(j, i));
j++;
i++;
}
j=0;
i=3;
while(i<=s2.length())
{
j2.add(s2.substring(j, i));
j++;
i++;
}
Iterator<String> itr1 = j1.iterator();
while (itr1.hasNext()) {
String element = itr1.next();
System.out.print(element + " ");
}
System.out.println();
Iterator<String> itr2 = j2.iterator();
while (itr2.hasNext()) {
String element = itr2.next();
System.out.print(element + " ");
}
System.out.println();
set2.addAll(j2);
set2.addAll(j1);
set1.addAll(j1);
set1.retainAll(j2);
System.out.println("Union="+set2.size());
System.out.println("Intersection="+set1.size());
j_coeffecient=((double)set1.size())/((double)set2.size());
System.out.println("Jaccard coeffecient="+j_coeffecient);
}
}
No comments:
Post a Comment